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INFLUENCE OF ANTICHOLINESTERASE ON DISTRIBUTION OF
VENTILATION AND GAS EXCHANGE

INTRODUCTION

The threat of enemy employment of chemical warfare agents is a priority

area of concern for the U.S. Air Force (USAF). Prophylactic use of

anticholinesterase compounds is one strategy being considered for environments

where chemical warfare nerve agents are a potential threat. These compounds

are used clinically in the treatment of myasthenia gravis (1,4,11,13) and in

surgical settings for reversal of muscle relaxants used in conjunction with

anesthesia (5,6,9,14). Reported adverse reactions for these compounds include

bronchial constriction and increased bronchial secretions (2.3,15). Although

these reactions are generally assumed to be associated with overdosage, these

anticholinesterases are contraindicated in patients with bronchial asthma (2).

There is evidence of pulmonary edema formation with clinical doses of

neostigmine (12). Hence, there is a potential risk of pulmonary complications

and impaired gas exchange when anticholinesterases are used therapeutically or

as a prophylactic measure to combat chemical warfare nerve agents (7,10).

Little data are available in the literature relating dosage of pyrido-

stigmine to the onset of pulmonary complications. Furthermore, it is not

clear at what point the degree of bronchial constriction is sufficient to

cause gas exchange impairment. If compounds such as pyridostigmine are to be or

used as a prophylactic chemical defense agent, two questions must be answered: {

1) At what dosage are aircrew members at risk for increased bronchial 0

constriction and/or bronchial secretions? and 2) Is there a "safety zone"

where bronchial constriction may occur, but gas exchange remains unaffected? /
y Codes
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This study was designed to provide information that will help answer these

questions.

METHODS

The pig was chosen as the primary experimental model for this study

because the pig model is commonly used in studies involving cardiopulmonary

responses to acceleration. To obtain an estimate of species variation

in the response of the respiratory system to pyridostigmine, experiments

conducted in pigs were repeated in 4 dogs.

Eleven Yorkshire barrows weighing 23.2 ± 4.96 kg were anesthetized with 18

mg/kg ketamine and 2 mg/kg xylazine administered intramuscularly.

Pentobarbital sodium was administered intravenously as supplemental anesthesia

when required. In each animal, a tracheostomy was performed, a carotid artery

was cannulated, and a catheter was passed through the right internal jugular

vein to the level of the pulmonary artery. Catheter placement in the

pulmonary artery was determined from the observed pressure profile measured at

the catheter tip.

Following catheter placement, mechanical ventilation with a tidal volume

of 15 ml/kg was instituted using a ventilator that required the animal to

generate -5 cm H20 airway pressure (assisted ventilation). After a

stabilization period, (1) arterial and mixed venous blood were sampled for

blood gas analysis, (2) Pco 2 in mixed expired gas was determined, and (3)

arterial blood was drawn into a vacutainer tube containing EDTA for

determination of cholinesterase activity in whole blood, plasma and red blood

cells. A period of hyperventilation was then imposed using the controlled

ventilation mode of the ventilator. Total pulmonary resistance during a

period of apnea at functional residual capacity was determined using the
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forced oscillation method (6) after which assisted ventilation was reinstated.

A test dose of pyridostigmine bromide (Mestinon or Regonol) was administered

intra-arterially over a period of 1-2 min, and, after a stabilization period

of 15 min, the determinations were repeated.

The protocol was modified slightly in the dog study. In the experiments

in which 4 mongrel dogs (weight = 21.9 ± 3.18 kg) were used, anesthesia was

induced with pentobarbital sodium (30 mg/kg), and tracheal access was provided

by an endotracheal tube rather than by tracheostomy.

In the initial experimental design, the end-point for the titration was to

be the point at which the animal could no longer generate the -5 cm H20 airway

pressure necessary to trigger the ventilator. However, during several pilot

experiments, massive doses of pyridostigmine were given without achieving the

desired end-point; the maximum cumulative dose used was 9-12 mg/kg.

RESULTS

The influence of pyridostigmine on red blood cell (RBC) and plasma

cholinesterase activities in both pig and dog is shown in Figures 1 and 2.

Mean RBC cholinesterase activity, normalized to control value, in 4 pigs and 4

dogs is shown in Figure 1 as a function of pyridostigmine dose. Mean

cholinesterase activity in RBC before administration of pyridostigmine was

found to be 5220 ± 367 (S.D.) mU/ml at 25*C in the pigs and 2858 ± 276 mU/ml

in the dogs. Significant differences in species response to pyridostigmine,

as determined by Student's t-test, were evident only at the 3 and 9 mg/kg

levels (P<.05).

The normalized response of dog and pig plasma cholinesterase activity to

pyridostigmine administration is shown in Figure 2. Mean cholinesterase
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Figure 1. Normalized RBC cholinesterase activity as a function of cumulative
pyridostigmine dose in 4 pigs and 4 dogs. Differences between species
response (P<.05, Student's t Ll t) are noted by *. Standard error of
the mean is indicated.

activity at 25°C prior to pyridostigmine was 516 t 3.8 mU/ml in the pigs and

1427 z 377 mU/ml in the dogs. At each pyridostigmine level, the relative

plasma cholinesterase inhibition was greater in the dogs than the pigs

(P<.O01, Student's t-test).

Observed changes in pulmonary resistance are shown as a function of

pyridostigmine dose for the 4 pigs in Figure 3 and for the 4 dogs in

Figure 4. An analysis of variance (ArOVA) perfor ed on the pig data

shown in Figure 3 indicates that the gerneral trend of increased pulmonary
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Figure 2. Normalized plasma cholinesterase activity as a function of cumul-

ative pyridostigmine dose in 4 pigs and 4 dogs. Differences between
species response (P<.05, Student's t-test) existed at all pyrido-
stigmine levels. Standard error of the mean is indicated.

resistance is statistically significant (P<.005). However, comparison of the

resistance values following pyridostigmine to control values by paired t-test

indicates that a significant increase in resistance was not evident until at

least 3 mg/kg was administered.

A similar analysis of the corresponding dog data did not yield

statistically significant differences, probably because of the small number of

animals and large scatter in the data. Nevertheless, a trend toward
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pyridostigmine-induced increased pulmonary resistance in the dog is also

apparent.

The gas exchange data show a similar pattern. Arterial Po2 as a function

of pyridostigmine administered to 4 pigs is shown in Figure 5. An ANOVA

performed on these data indicates that a significant decrease in arterial Po2

occurs with increasing doses of pyridostigmine (P<.005). However, a paired t-

test comparison of Po2 control data with values at each dosage level indicates

that a significant impairment of gas exchange did not occur until the

pyridostigmine dose reached 6 mg/kg.

Figure 6 shows similar data obtained from the 4 dogs. Although the trend

is again evident, the data failed to exhibit statistical significance.

Arterial Pco 2 and physiological dead space, calculated from arterial and

mixed expired Pco 2 data, did not show physiologically significant alterations

as a function of pyridostigmine dose.

DISCUSSION

The data from these experiments indicate not only that, during acute

exposure to pyridostigmine, significant increases in pulmonary resistance can

be detected at dosage levels in the 3 mg/kg range but also that significant

gas exchange impairment does not occur atlevelsbelow 6 mg/kg. Since these

levels are 10 to 60 times the recommended clinical intravenous dose, it

is doubtful that gas exchange abnormalities would result from the small

prophylactic oral doses being considered for pilots.

The data also suggest some interesting species variation with respect to

cholinesterase distribution and responses to anticholinesterase

administration. In pigs, there was a 10:1 ratio of red blood cell
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Figure 3. Observed changes in pulmonary resistance as a function of cumulative
pyridostigmine dose in 4 pigs. Standard error of the mean is
indicated.

20- DOG

15-
RESISTANCE

(cm H20/L/sec)
I0

5 - -

0 I I--
0 3 6 9

PYRIDOSTIGMINE (mg/kg)

Figure 4. Observed changes in pulmonary resistance as a function of cumulative
pyridostigmine dose in 4 dogs. Standard error of the mean is
indicated.
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Figure 5. Arterial P02 as a function of cumulative pyridostigmine dose in 4
pigs. Standard deviations are indicated. (see text)
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Figure 6. Arterial P02 as a function of cumulative pyridostigmine dose in 4

dogs. Standard deviations are indicated (see text)
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cholinesterase activity to plasma activity; however, in the dogs, the ratio

was 2:1.

The degree of RBC cholinesterase inhibition shown in Figure 1 suggests

that the pyridostigmine is not well distributed among blood components. To

confirm that circulating plasma levels of pyridostigmine continued to increase

during continued administration of pyridostigmine, we sent plasma samples from

2 pigs to the USAF School of Aerospace Medicine (USAFSAM) where Dr. Faust

Parker (Rothe Development, Inc.) analyzed the samples for pyridostigmine

concentration (8). The resulting data, shown in Table 1, demonstrates that

the pyridostigmine was not sequestered and that the circulating levels did.

indeed, increase as was the intent in the experimental design.

TABLE 1. PLASMA PYRIDOSTIGMINE LEVELS IN PIGS

Pyridostigmine Pig I plasma Pig 2 plasma
dose (mg/kg) concentration concentration

(nq/ml) (nq/ml)

0 0 0
1 711 614
3 1202 1217
6 2011 2064
9 2932 2817

Figure 1 suggests that, with the increasing plasma pyridostigmine

levels, movement of the inhibitor into RBCs was limited. However, when

the absolute whole blood activity was examined, it was evident that the same

amount of cholinesterase was inhibited in both species (Table 2). The overall

systemic response, however, was not the same. The primary systemic response

observed in the pigs was increased salivation. In the dogs, there was also
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increased salivation along with more severe muscarinic effects including

increased peristaltic activity, vomiting, and diarrhea. These systemic

responses suggest that the dogs were more sensitive to the actions of the

drugs or that sudden drops in the circulating plasma levels of cholinesterase

rather than total blood cholinesterase are responsible for these effects.

TABLE 2. WHOLE BLOOD CHOLINESTERASE INHIBITION

Pyridostigmine dose (mg/kg)

3 6 9

Pig
mU/m, 940 985 963
S.D. 101 87 99

Dog
mU/ml 918 918 859
S.D. 192 228 269

In conclusion, this study indicates that acute administration of large

doses of pyridostigmine bromide results in salivation and gastrointestinal

stimulation well in advance of detrimental effects involving the respiratory

system and the muscles of respiration.
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